<u>Table I</u> Tensile Strength and Elongation at Break for WRB Film

	Avg. Film Thickness (mils)	Tensile Strength @ Break (PSI)	Elongation @ Break (%)	
Temperature:	75° F.			
Sample Identity				
MOISTUREGUARD	11	65	375	

	Avg. Film Thickness (mils)	Tensile Strength @ Break (PSI)	Elongation @ Break (%)	
Temperature:	0° F.			
Sample Identity				
MOISTUREGUARD	11	313	89	

Note:

Values reported are the average of 10 samples run per material.

<u>Table II</u>

Water Vapor Transmission for WRB Film (ASTM E-96, Water Method)

Sample Identity	Film Thickness (mils)	Perms (grains of water vapor/hour/ft²/inch of Mercury pressure differential
MOISTUREGUARD	11	12.6

Note:

Values reported are the average of three samples per material. Test conditions: 75°F./ 50% R.H. in a constant temperature/humidity room, and assuming 100% R.H. inside sealed test can assembly.

<u>Table III</u>

Water Absorbency of WRB Film

(% Weight Gain Due to Water Pick-Up)

		Water Absorbency (total weight of water absorbed in %)					
Water Immersion Tir	ne, hours:	1 2 4 8 24 48		48			
	Film						
	Thickness						
Sample Identity	(mils)						
MOISTUREGUARD	11	20.9	21.2	18.7	18.1	17.3	16.6

Note:

Values reported are the average of 3 samples per material.

Table IV Tensile Bond Adhesion Strength of WRB to Selected Substrates

Adhesive Strength to Substrate(PSI)						
Substrate:	Substrate: DGG Plywood OSB					
Sample Identity						
MOISTUREGUARD	17	85	54			
	(fails in DGG)	(fails in plywood)	(fails in OSB)			

Note:

Values reported are the average of three samples per material.

<u>Table V</u>

Exposure to High Temperature and High Humidity: ICBO AC-24 Acceptance Criteria (Composite Samples)

14 Day Exposure to 100°F. and 100% Relative Humidity					
Test Results:	Pass - Fail				
Substrates:	DGG Plywood OSB				
Sample Identity					
MOISTUREGUARD	Pass	Pass	Pass		

Note:

"Pass" denotes no deleterious effects to the WRB coating surface after 14 days exposure of the composite panels to 100°F. and 100% Relative Humidity. 5 samples run per treatment.

Table VI

Freeze/Thaw Cycling: ICBO AC-24 Acceptance Criteria (Composite Samples)

Test Results:	Pass - Fail			
Substrates:	DGG Plywood OSB			
Sample Identity				
MOISTUREGUARD	Pass	Pass	Fail	

Note:

"Pass" denotes exposure to 10 F/T cycles without any deleterious effects to the WRB coating on the composite panel. 5 samples run per treatment.

One complete freeze/thaw cycle consisted of subjecting the composite panels (substrate sheathing with a butt joint, joint compound, reinforcing mesh, and WRB topcoat) to a minimum of 16 hours in a 120°F. oven, removing samples from the oven and placing them coated side down in a water bath for 8 hours, followed by freezing the wet panels for 16 hours, then allowing the panels to thaw-out at room temperature and then visually examining the WRB coatings for any deleterious effects.